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Dynamic spin-pair correlations in a Heisenberg chain 
at infinite temperature based on an extended short-time 
expansion 

Markus Biihm and Hajo Leschke 
lnstitut fiir 'Iheoretixhe Physik. UniversitSl Erlangen-Numberg. Staudtstrasse 7, W-8520 
Erlangen, Germany 

Received 2 May 1991, in final form 8 November 1991 

Abslracl. Exact mefficienls of Ihe shon-time expansion of the spin-pair mrrelations 
are mmputed up to order t30 in the one-dimensional spin-; Heisenberg model with 
isotropic nearest-neighbour interaction ai infinite temperature. Thc key p in l s  of the 
computational algorithm are sketched. l h e  newly derived coefficients are "Sed lo obtain 
lower and upper bunds on the pair mrrelaiions which are graphically indistinguishable 
up to times nearly hvice as large as those up 10 which previous bounds are reasonably 
close together. In view of the spin-diffusion hypothesis lhe spatial spread of lhe pair 
mrrelalions is studied as a function of lime, but no indication for a diffusive long-lime 
khaviaur is found in lhe extended dme region. where lhe o m  bounds provide conlml. 

1. Introduction 

Considerable attention has been paid to the dynamics of the spin-; Heisenberg chain. 
Of particular interest is the time-dependent spin-pair correlation function, because its 
Fourier transform is closely related to the spectra of inelastically scattered neutrons 
and to the width of the spin resonance line in quasi-one-dimensional magnets. For a 
review see [l]. 

Even in the limit of infinite temperature an exact solution for the isotropic chain 
is not known. In this situation there has been much activity 12-51 to obtain the short- 
time expansion of the pair correlations. This is a uselul first step to gain insight into 
the spin dynamics, as there are powerful methods which are based on the expansion 
coefficients. However, the evaluation of these coellicienrs becomes extremely difficult 
with increasing order due to the exponential growth of computational effort. 

In the present paper we have reconsidered this problem and succeeded in com- 
puting the exact coefficients for the isotropic spin-4 chain at infinite temperature up 
to order t30. In this way we have extended previ6us results up to t I 6  [3] and con- 
firmed estimates for higher autocorrelation mcllicicnts derived in [SI by finite-chain 
diagonalizations. The general algorithm and the key points of the computer program 
are outlined in section 2. 

In section 3 we use the newly derived coeflicients as a basis to compute lower 
and upper bounds on the pair correlations by following the method of 161 and its 
generalization by 121. In section 4 we propose to test the spin-diffusion hypothesis by 
bounding the spatial spread of the pair correlations as a function of time. 
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2. Formulation oi the problem and evaluation of expansion coefficients 

The Heisenberg chain [7, 81 with isotropic nearest-neighbour interaction and without 
external magnetic field is specified by the Hamiltonian 

M Bhm and H Leschke 

N 

Here S: denotes the a t h  component (a = I, y ,  z )  of a quantum spin operator 
located at the nth site of a one-dimensional lattice with unit lattice constant, a total 
number of 2N + 1 sites, and cyclic boundary conditions.fThe macroscopic limit of 
the normalized time-dependent spin-pair correlation functfon at infinite temperature 
7' is given as (in units with h 2 1) 

Thii function satisfies 

m 

C ( n , t )  = C(-n,t) = C(n,-1)  (5) 

C(n,O) = hno. (6) 

The infinite-temperature limit is responsible for the real-valuedness of C(n, t ) ,  the 
symmetry (5). and the triviality of the static correlations (6). The boundedness (3) is 
a ansequence of our normalization. The sum rule (4) follows from the conservation 
of the total spin 

N d 
dt 
- S;;(t) = o  

n=-N 
(7) 

in combination with (6). The symmetry (5) implics that C ( n , t )  depends only on the 
absolute value of the (exchange) interaction constant J .  Since, in the present paper, 
we only consider an isotropic interaction, the corrclation function does not depend 
on the particular spin component chosen (n = i). 

Due to (5) the Bylor expansion of C( 1 1 . 1 )  about f = 0 can be written as 

( -1) '  
m 

C ( n , t )  =:C--M,,(n)(J1)2' (21 ) !  
I =0  

By expanding the exponentials in (2) the dimensionlcss coefficients Mz,( n) defined 
through (8) are seen to be expressible as thc macroscopic limit of the trace of iterated 
commutators 

Tr(S,I { N z', S i ) )  M,,(n)  = lim 
N - m  J2'Tr(S;S;) (9) 



Dynamic spin-pair correlations 1045 

Here the m-fold iterated commutator of the Hamiltonian H with an arbitrary oper- 
ator A on the Hilbert space for the '2 N + 1 spins is denoted by a curly bracket and 
recursively defined by 

{ H o , A ] : = A  { H " + ' , A ) : =  H { H m , A ) - { H m , A ] H .  (10) 

As observed earlier [4], the trace in the nominator of (9) can be evaluated more 
efficiently by using its cyclic invariance 

Tr( St { I f z ' ,  5':)) = (-1)' Tr( { H' , S t ] {  H' , Si]). (11) 

The two commutators on the right-hand side are less iterated and identical apart 
from a shift by n lattice sites. One should note that M,,(n) vanishes for 1 < In1 
Jylp?lcgc of Tr -$E 0. Mficcnyq fgr the Q"PPi*l P l E P  nf min-l Y... , nnPIltnrC vr-.".v." r-- --- -- 

all coefficients M,, (n)  are integer valued. 
For spin f we have computed the pre-limit expression in (9) with exact integer 

arithmetic for a closed chain consisting of 2 N  f 1 = 31 sites thereby getting all non- 
zero coefficients M,,(n) for the infinite chain corresponding to a short-time expansion 
up to order t 30 .  In accordance with (11) we had to evaluate commutators up to the 
15th iteration. The result for the 1-fold commutator { H', S:) is a sum of products 
of spin operators corresponding to various components and lattice sites. By using the 
spin-: formula (12) each product can be reduced to a product containing at most 
one spin operator associated with a given site. The total number of different reduced 
products increases exponentially with 1. For the 15-fold commutator this amounts to 
a sum of more than 13 million different products. In order to overcome the arising 
computer storage problem we had to develop a program that makes efficient use of 
the available storage capacity. The two key points of this program are sketched as 
follows. 

(i) The reduced products are stored in a very compressed form. For each of the 
31 sites which underly a given product 2 bit are needed to store one of the four 
possibilities: Sz, 9, S" or 1. This implies that each reduced product can be stored 
in a @-bit integer. Clearly, since a given reduced product may occur many times in 
{ H I ,  S:), a combinatorial factor counting the total number of occurrence$ also has 
to be stored. 

(ii) The ( 1  + 1)-fold commutator { H i + ' , S f , j  is evaluated by calculating the 
one-fold commutator of I€ with each of the different reduced products occurring in 
the one-fold commutator { H ' ,  Si),  one after the other. In between, the resulting 
new reduced products are immediately collected into different products with the 
appropriate combinatorial factors by summing identical products. In doing this the 
required storage capacity is reduced by a factor of the order of 10 in comparison 
with the more standard procedure which first calculates { H ,  { H ' ,  Si))  completely 
and performs the collection afterwards. 

By these two points we were able to compute the coefficients M,,(n) up to 
21 = 30 using less than 200 Mbyte of storage capacity. Another advantage of the 
first point is a saving of computer time, because not only the calculation of the 
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Ibbk 1. Exact coefficients Mzr(n) up to 21 = 30. The mefficients which are not listed 
are zero. 
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commutator oi H with a singie reduced product wn 'ne done with bit manipuiaiion, 
hut also the necessaly equality checks during thc suhscquent collection become faster. 
As a minor point we want to mention that we had tu extend the integer arithmetic, 
since the higher coefficients do not fit into @-hit integers. 

The final results for the coellicients M , , ( T I )  arc presented in table 1. The first 
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1 '  , 
I \  I 

I \ i 

JI 

Pigvre 1. h e r  and upper bound on lhe normalized aulOmmclation funclion C ( 0 , t ) .  

part of the table up to 21 = 16 is identical to the result of [3] and is given here 
for completeness. TO our knowledge all coefficients corresponding to 21 2 18 are 
new. Approximate results for the autocorrelation coelhcients M,,(O) up to 21 = 30, 
which are based on numerical diagonalization of finite chains of up to 11 spins, were 
reported earlier [SI. The significant digits of these results arc now seen to be correct. 

3. Bounds cm the correlation functions 

Since the method of obtaining bounds on correlation functions is well known [2, 4, 
61, we sketch only the main points. The temporal Fourier transform of the autocor- 
relation function 

is an even probability density on the real line of frequencies, that is 
m 

d w E ( 0 , w )  = 1. (14) J_, 6 ( 0 , - w )  = C(0 ,W)  2 0 

' he  non-negativity of c (0 ,w)  follows from that of the dynamic structure factor. In 
consequence, the autocorrelation coefficients M z r ( 0 )  are not only generated by a 
'Aylor expansion but also related to the even moments of a probability density 

m 
i lw (?'(0,w)w2' = J 2 ' M z I ( 0 )  L 

The equation for the inverse transformation 
m 

C ( 0 , t )  = d W E ( 0 , W ) C O S W t  (16) J _ ,  
therefore suggests the following procedure to uom[iutc a lower (respectively upper) 
bound on C(0,t) .  Within the set of all even probability densities with prescribed 
even moments J Z ' M , , ( 0 )  ( 1  = O , . .  . , 1 , , , )  one has to determine-at the given 
time t-a density which gives the smallest (respectively largest) average of COS wt .  
kE an extremizing density one can always take a suitahly weighted sum of I , , ,  + 1 
Dirac delta-functions located at suitable frequencies. In practice, the frequencies and 
weights can be found numerically by a linear-programming method [6]. 
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The results of our computations with I,,, = 15 are plotted in figure 1. On the 
given scale the lower and the upper bound on C ( 0 ,  t )  are graphically indistinguishable 
up to times Jt = 2.8. We have confirmed previous observations [4, q that, over the 
time interval considered, the lower (respectively uppcr) bound agrees excellently with 
the so-called principal representation [9] which uses at all times the frequencies and 
weights of the Gaussian quadrature formula corresponding to the given finite set of 
l,,, = 15 (respectively l,,, = 14) moments. Therefore, the principal representation 
appears to be well suited to provide fairly reliable results rapidly. The simplest 
approach to C ( 0 , t )  is a truncation of the Thylor series (8). Such a truncation also 
leads to bounds on C ( 0 ,  t ) ,  because the cosine function is hounded by its truncated 
power series alternately from below and above. However, the bounds obtained in this 
way are graphically indistinguishable only up to timcs J t  = 1.8 and diverge rapidly 
for larger times. 

We have tried out the maximum-entropy method (see, for example, [lo]) to obtain 
a so-called unbiased extrapolation of C ( 0 , t )  to timcs J t  > 2.8. However, we did 
not succeed in handling the serious convergence problems related to the relatively 
large number of prescribed moments. In any case, figure 1 clearly shows that the 
results for C(0, t )  presented in figure 3(b) of [lo] are less reliable than claimed by 
the authors. This supports our belief that the power of the maximum-entropy method 
i., often overestimated. 

Obtaining bounds on the correlation function of two spins at different sites is not 
this straightforward, because the temporal Fourier transform of C( n,  t )  with n # 0 
has no unique sign. Therefore, we first consider the spatial Fourier transform of the 
pair correlation 

m 

I ( k , t )  := c C(n, t )c .oskn  ( k l <  7r (17) 
n=-02 

which is sometimes also called the intermediate structure factor. The following prop- 
erties of I (  k ,  t )  are simple consequences of (4)-(6) 

' !  

As the s h o r t h e  expansion coefficients of l ( k ,  / )  are simply the spatial Fourier 
transform of those of C ( n , t )  and the temporal Fourier transform of I ( k , i )  is 
the non-negative dynamic structure factor, one can compute bounds on I ( k ,  t)-for 
given wavenumber k-analogously to those on C ( 0 ,  /). For example, the inequalities 
I coswtl < 1 and 1 - i ( ~ t ) ~  < COS wt immediately imply 

V(k>t) I< 1 (20) 

and 

1 -2 (1  - c o s k ) ( J t ) ' <  I(k,f). (21) 

But again one can do better numerically by applying the procedure of [6] (see 141). 
By using all coefficients of table 1 we thus have obtained hounds which are plotted in 
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Figure 2 Arithmelic mean of the lower and upper bound on lhe inlennediate stmclure 
factor I(k, 1 ) .  

figure 2. Again, these bounds are graphically indistinguishable up to times J t  = 2.8. 
One should note that I ( k , 1 )  exhibits oscillations and has no unique sign. 

Following 121, the bounds on I( k, 1 )  can now be used to obtain bounds on C( n,  1 )  
by performing the inverse tranformation 

C ( n , t )  =Lx g I ( k , t ) c o s k n  

piecewise. More precisely, by using for the (numerical) integration over k the lower 
(respectively upper) bound on I ( k ,  1) if cos kn  is positive (respectively negative) and 
the upper bound on I (  k ,  1) if cos kn is negative (respectively positive), one gets a 
lower (respectively upper) bound on C( n ,  1 ) .  

JI 

Figure 3. Lower and upper bound on [he normalized mrrelalion function C(n, f) for 
the near neighbours 71 = 1,. . . , 5 .  

The final results are plotted in figure 3. Corresponding lower ana upper bounds 
on the near-neighbour correlations are graphically indistinguishable up to times J 1  = 
2.7. The previous bounds in [21 are indistinguishable only up  to J t  = 1.6. From 
figures 1 and 3 it is seen that in the time region accessible to our bounds the 
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correlation functions C ( n , t )  for n = 0 , 1 , .  . . , 5  are still oscillating but remain 
positive. 

M Bohm and H Leschke 

4. Bounds on the spatial variance and the diffusion hypothesis 

For the isotropic Heisenberg model and for more general spin models for which 
one component of the total spin is conserved (7), it is often claimed that the high- 
temperature spin dynamics on large time and space scales can be described by a 
diffusion process (see, for example, [l]). In this context the isotropic spin-; Heisen- 
berg chain is of particular interest, because for this model the validity of the diffusion 
hypothesis is least clear for two reasons. 

(i) A general observation is that the correlation functions oscillate the more 
strongly the smaller the spin quantum number and space dimension are. 

(ii) For the isotropic spin-; X Y  chain (dropping S:,S:+, in (1)) it is known [ll, 
121 that no diffusion emerges asymptotically, although (7) remains true. 

Our concern in this section is to see whether the spin-diffusion picture is supported 
by the extended short-time expansion. 

Even though we extended the time region to where the bounds on the individual 
correlation functions C( n ,  t )  are reasonably close together, the remaining oscillations 
did not allow us to decide for or against a diffusive leading t - ' I 2  behaviour for large t. 
Nor does the time dependence of I( k, t )  for small k develop the diffusive exponential 
decay in the time region accessible to us. As an alternative way to proceed we propose 
looking at the quantity 

which we call the spatial variance of the pair correlation function, although we do 
not strictly know whether C ( n , t )  remains non-negative for all 1. Nevertheless, we 
believe that it is a natural measure for the spread of the 'spin density' and hence a 
quantity more adapted to testing the diffusion hypothesis. In the diffusive case its 
leading behaviour for large t should be linear, that is 

u 2 ( t )  .-- 2Dt (24) 

where D denotes the diffusion constant. 

respect to k at k = 0. This relation can be written as 
We note that u 2 ( t )  equals-up to a sign-the second derivative of I ( k , t )  with 

l - - I ( k , t )  
0 2 ( t )  = 21im 

k - 0  k2 

according to (18) and (19). By this equation bounds on I ( k , t )  induce bounds on 
U'( t ) .  For example, inequalities (20) and (21) immediately imply 

0 < u2(t)  < 2 ( J t ) 2 .  (26) 

Of course, sharper hounds on u 2 ( t )  can be computed numerically by using in (25) 
the bounds underlying figure 2. Our results for these bounds are plotted in figure 4. 
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Jt Jl 

Flgare 4 lower and upper b u n d  on the spa- 
tial variance o*(t) of the Heisenberg chain (lower 
cuwes) and the exact spatial wriana r i U ( t )  of 
the XY chain (upper curve). 

Flgure 5. Lower and upper bund on the rime 
derivative of the spatial variance d a 2 ( i ) / d t  (lower 
curves) and the time derivative of the spatial van- 
ance d o $ , ( t ) / d t  (upper ”). 

The bounds are graphically indistinguishable up to times J t  = 3.3.  In contrast to 
other quantities the spatial variance Seems to reveal no oscillations thereby supporting 
our belief that it is a more appropriate quantity for testing the diffusion hypothesis. 

In order to see more clearly whether there is any indication for a diffusive long- 
time behaviour of u2( t ) ,  we have numerically computed bounds on its time derivative 
d u 2 ( t ) / d t .  This can be done by starting from the time derivative of (25). The 
required bounds on a I ( k ,  t )  fat can be obtained by substituting -w sin w t  for cos w t  
in the linear-programming procedure. The lower and upper bound on d u 2 ( t ) / d t  are 
plotted in figure 5. For this derivative we observe a linear behaviour with slope 4J2 
up to times J t  k 0 .3 .  After a cross-over regime another linear behaviour with slope 
FZ 0 .6Jz  emerges about J t  = 1.7. The behaviour beyond J t  = 2.7 is not accessible 
to our bounds. 

On the basis of these findings we see essentially WO distinct possibilities for the 
long-time behaviour: 

(i) The asymptotic regime is reached already for J t  > 1.7. This would imply a 
non-diffusive long-time behaviour of the form 

v2( t )  - A( Jt)’ A is 0 .3  (27) 
(ii) There is another cross-over beyond J t  = 2.7 to a diffusive long-time be- 

haviour of the form (24) with 

D > 2 . 3 5 .  (28) 
There will have to he further investigations to reach a decision between these two 

alternatives. 
For the purpose of comparison it is instructive to calculate the spatial variance 

u$y( t )  for the isotropic spin-; X Y  chain by using the exact result of [ll] (see also 
(121) for the longitudinal pair correlations. By substituting for C ( n , t )  in (23) the 
squared Bessel functions we find (see formula (5.7.12.21) of [13]) 

m 

~ ; ~ ( t )  = [ J , ( 2 J t ) 1 2 n 2  = 2 ( J t ) 2 .  (29) 
n=-m 
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This result reflects the well-known non-diffusive behaviour and coincides with the 
upper bound in (26). It is also shown in figures 4 and 5. As is suggested hy figure 5, 
the second inequality in (26) still holds after diffentiation with respect to t .  

Some readers might wish to compare our findings with results for the correspond- 
ing classical spin chains. Here computer-simulation methods [14, 151 allow one to 
obtain data for the time-dependent pair correlations in chains of up to 20000 spins 
which are believed to be statistically significant for times as large as J t  = 100 [ls]. 
These data convincingly suggest the existence of a long-time tail, although there 
has been a debate (161 on the question whether the value of the exponent oi is strictly 
$ of not. While these results for classical chains are of much interest in their own 
right, the reader should resist the temptation to draw conclusions from them about 
chains in the extreme quantum limit of spin $. She or he only needs to realize that in 
[U] a diffusive long-time behaviour is convincingly suggested not only for the classical 
Heisenberg chain but also for the classical XY chain. 

M B6hm and H Leschke 

5. Conclusion and outlook 

The coefficients of the short-time expansion of the spin-pair correlations have been 
evaluated up to order t3' for the isotropic spin-; Heisenberg chain at infinite temper- 
ature. Using these coefficients we improved previous bounds on the autocorrelation 
as well as on the near-neighbour correlations. In the extended time region, where the 
bounds are reasonably close together, the correlation functions do still oscillate and 
remain positive. Both facts are not understood analytically. Although we supplied 
some control for the time dependence of the spatial spread of the pair correlations, 
the validity of the spin-diffusion hypothesis remains open. 

With the improved algorithm we also have computed the coefficients up to order 
tZa for anisotropic X Y Z  chains thereby extending the work of [4] and [2], who 
gave these more general coefficients corresponding to 1'' and t14 respectively. Our 
result is too long to be printed here. However, in a forthcoming publication we 
plan to present selected results on anisotropic chains which may be compared with 
experimental data for quasi-one-dimensional magnets. 
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